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SOME STUDIES ON THE NONLINEAR DYNAMIC RESPONSE
OF SHELL-TYPE STRUCTURES
By David A. Evensen and Robert E. Fulton

NASA Langley Research Center
INTRODUCTION

Recent aerospace applications involving thin-walled structures have neces-
sitated studies of the nonlinear vibration and response of thin shells. The
results of some current research on nonlinear dynamics of thin shells are sum-
marized in the present paper. Two related problem areas are outlined; both
involve geometric nonlinearities and thin shells of revolution.

The first problem considered is the forced, nonlinear flexural vibrations
of thin-walled circular cylinders. Approximate solutions are obtained which
show that vibrations involving a single bending mode or two coupled bending
modes can occur. The analysis exhibits several features that are character-
istie of nonlinear flexural vibrations of axisymmetric elastic structures in
general.

The second problem deals with the dynamic axisymmetric snap-through buckling
of éhallow conical and spherical shells subjected to uniformly distributed impul-
sive pressures. Approximate buckling pressures are obtained for a variety of
boundary conditions for both types of shells and comparisons are made between

conical and spherical caps having similar geometries.
SYMBOLS

An(t),Bn(t) generalized coordinates
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average values (over one period) of the vibration amplitudes
(see eqs. (7) and (9))
external radius of conical shell (fig. 7a)

bending stiffness, ———EEE————
12(1 - p?)

Young's modulus

stress function

nondimensional amplitude of the applied loading
shell thickness

center rise of the shell (figs. T7a and Tb)
TPp*5(1 - u2)

initial impulse parameter,
EphuH2

initial impulse per unit area

radial and circumferential changes in curvatures

length of the cylinder

number of axial half-waves and circumferential waves, respectively

radial loading applied to the surface of the cylinder

horizontal coordinate of conical shell (fig. Ta)

radius of the shell

time

displacements of a point on the median surface of the shell (see
figs. 1, 7a, and 7b)

displacement constant, see equation (14)

shell coordinates (see fig. 1)

nondimensional strain energy of the shell

colatitude coordinate for spherical shell (fig. Tb)
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half opening angle for spherical shell (fig. Tb)
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NONLINEAR FLEXURAL VIBRATIONS OF THIN-WALLED CIRCULAR CYLINDERS

The nonlinear flexural vibrations of thin-walled circular cylinders are
analyzed by assuming two vibration modes and applying Galerkin's procedure on
the equations of motion. The assumed shape for the radial deflection w and
the related stress function F are chosen such that they approximately satisfy
the boundary conditions of a cylinder having "freely-supported" ends. In-plane
inertia terms are neglected, and a linear stress-strain law is assumed. The
nonlinearities in the problem arise from including nonlinear rotation terms in

the strain-displacement relations.

Governing Equations
Using the well-known approximations of Donnell's shallow-shell theory as
exemplified in reference 3, the equations of motion of a thin-walled circular

cylinder can be combined to give

2 2 2 2 2 2
D+ on W - g4 LOF TP, oF v, 3 (1)
at2 R ax2 By2 ax2 dx dy dx dy ax2 ayz
and
1. 1w, (B ) P (2)
Eh R 3,2 X Jy o2 32

where w is the radial deflection and F is the usual stress function. (The
coordinate system and shell geometry are shown in fig. 1.)
Approximate solutions to equations (1) and (2) were obtained by using the

following two-mode approximation for the radial deflection:




w(x,y,t) = {gn(t)cos %¥ + Bp(t)sin %%}sin 9%5

+ %E&nz(t) + an(t)]sin2 gutL_x (n 2 2) (3)‘

Here cos %%-sin E%E and sin %% sin E%E are the linear vibration modes of

the cylinder, and equation (3) is limited to n 2 2 since only flexural motions
are being considered. The bracketed term in (3) is included to satisfy the
periodic continuity condition on the circumferential displacement v.
Substitution of equation (3) into the compatibility equation (2) allowed
the latter to be solved for F. The expressions for w and F were then
examined and found to satisfy the following boundary conditions:
(a) The displacements u, v, and w, and their derivatives satisfy perio-

dicity conditions of the form

V(x:y:t) = v(x,y + EKR)t)

(b) The radial displacement w goes to zero at the ends of the cylinder,
i.e., at x=0 and x = L.

(¢) To a first approximation, the in-plane stress-resultant Nx, the
moment-resultant M,, and the tangential displacement v all vanish at x =0
and x = L, In other words, the coefficients of the linear terms in the expres-
sions for Ny, My, and v go to zero at the ends of the cylinder, but the
nonlinear terms involving An?, ApBn, and Bn2 do not vanish there. These
end conditions are similar to the boundary conditions for a cylinder which has
freely-supported ends.

The applied loading, q(x,y,t), was chosen such that only one mode ié

directly excited:




a(x,y,t) = Qu cos %% sin EEE cos wt (%)

Finally, the expressions for w, F, and q were substituted into equation (1)
and a Galerkin procedure was used to obtain two nonlinear differential equations
for the modal amplitudes Ap and Bp. In nondimensional form, these coupled

equations are

2 2
d2Cc 3€ d2§C dCc dggs dCs
+€c+?gcgc'—_+_ +Cs 2+a—
dre ar2 dr dr T
2
- €7§c(§c2 + QSE) + €25Cc(cc2 + ng) = Gpp cos ar (52)
and 5
2
2
a°t 3¢ “t,  [ag act, (at.
+ Cs + 3 ;S gs + =] + €. + E_—
ar2 are dr gre T
2
2 2 2
= €7Cs(cs2 + &, ) + €25§s(§s + . ) =0 (5b)
where the nondimensional variables are
A Bn
QC = —hg cs = T
Q
T = wgt Gpn = gn 5
ph~wg
the nondimensional frequency is
Q=9
Wg

and the nonlinearity parameters are
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In these expressions, the parameter ¢ represents the aspect ratio of the

vibration mode:

£ - aR/n _ Circumferential wavelength (6)
L/m Axial wavelength ‘

Examination of the expressions for 7y, ®, €, and & 1in equations (5)
and (6) leads to the following observations:

(a) As the length of the cylinder tends to infinity, the parameters &,
7, and B all tend to zero, and equations (5) approach the previous results
for rings (ref. 1).

(b) Each of the nonlinear terms in equation (5) is multiplied by €; con~-
sequently, € can be viewed as the basic nonlinearity parameter in the problem.
Linear vibrations occur for € = 0, and increasing e makes the vibrations

increasingly nonlinear.

Approximate Solutions by the Method of Averaging
Equations (5) can be solved approximately by use of the method of Krylov-

Bogoliubov, often called "The Method of Averaging."” Such solutions will be



presented for vibrations involving (a) only the driven mode and (b) both the
driven mode and its companion mode. In the discussion which follows, the term
"driven mode" relates to (.(t) and cos ny/R sin mnx/L; the term "companion
mode" refers to QS(T) and sin ny/R sin mnx/L.

Response of a single bending mode.- Since the applied loading (eq. (4))

directly drives only one mode of the cylinder, a possible solution to equa -
tions (5) involves the response of only the driven mode. Application of the

method of averaging for this case gives

te(t) = A cos ar
(7)
¢ (r) =0
where A can be computed from
(1 - 020 - 22 02R - 22 B + 2 2R - G (8)

Equation (8) can be used to compute the variation of A with O for given
values of €, 7, &, and Gpn. When Gyn 1s nonzero, the forced vibration
response of a single mode is obtained; the case of free nonlinear vibrations
results when Gpn 1s put equal to zero.

Stability of the one-mode response.- The stability of the preceding solu-

tion was investigated by perturbing (,.(t) and {g(t). A study of the
resulting Mathieu-Hill equations indicated that within terms of order €2

(l) Perturbations of Cc are unstable within the area bounded by

2 —2
9¢eA 1 €A 1
1 - S - =
8@+u)<9<1 8 G*u)




(2) Perturbations of {g are unstable within the region

2 2
1 - é%?—(y + %>~< Q<1+ E%_(§ - )

(3) Both types of perturbations are unstable in narrow regions near
Q=1/2, 1/3, . . .

The first Instability region coincides with the locus of vertical tangents
to the response curves and indicates the well-known jump phencmena. The nar-
row areas near Q = 1/2, 1/3, . . ., denote possible ultraharmonic responses.
The remaining region, (2), indicates the area in which the companion mode is
parametrically unstable due to nonlinear coupling with the driven mode. To
obtain adequate solutions in region (2), it is necessary to consider motions
vhere both modes vibrate.

Response of the coupled bending modes.- When ¢ (v) and ¢.(r) both

oscillate, the method of averaging gives the approximate solution

£olT) = A cos Qr

_ (9)
¢s(t) = B sin Qr
where K and B satisfy the following equations:
- 2 _ N —f _ —

(1 -92)A+—3%A(§2 - 2) - %{3ﬁ+ﬁ) +€_§.§A(5A4+2K2]—32+Bu) = Gpn
(10a)

(l - QQ)E +'3€22 E(Ke - §2) - -6%5(5'3'2 + K2> + ":_2--8-3(53'l+ + KB + Kh> =0

1

(10b)

If B = 0, equations (9) and (10) revert to the single mode case discussed

previously. When B is not zero, the variation of A and B with Q can be



computed by solving equations (10a) and (10b) simultaneously, for given values

of €, 7, 0, and Gyp.
DISCUSSION OF THE CYLINDER RESULTS

Figure 2 illustrates the response curves for both free and forced vibra-
tions of a single bending mode. The dashed curve represents free nonlinear
vibrations and was obtained from equation (8) with Gpn put equal to zero.

The forced vibration response is given by the solid lines, which were computed
from equation (8) for Gpp = 0.1. Both the free and forced response curves
demonstrate a slight nonlinearity of the softening type. The value of € used
in these calculations was 0.01, and the values of > and & which were used
correspond to & = 0.1, € = 0.01, and p = 0.3. These values of & and ¢
are representative of a cylinder that is vibrating in the m =1, n = 10 mode
and which has a length/radius of = and a radius/thickness ratio of 1000. The
slight nonlinearity shown in figure 2 is typical of cylinders that are rela-
tively long and thin-walled. For other modes and geometries, however, the
nonlinearity can be much more pronounced.

This result is indicated in figures 3 and 4, which show how variations in
the parameters ¢ and & affect the nonlinearity of the vibrations. Fig-
ure 3 shows several free vibration response curves computed from equation (8)
for Gmn = O and for five values of € ranging from O to 1.0. The solid
lines were calculated for values of 7y and & corresponding to an aspect
ratio & = 1/2, and the dashed curves are for & = 2. Both sets of curves in

figure 3 demonstrate that the strength of the nonlinearity is determined pri-

2
2
marily by the parameter ¢ = Céﬁg) . The nonlinearity is generally small for

10




;ibrations involving very thin cylinders and/or low circumferential mode num-
bers, n. Conversely, strong nonlinearities occur for the case of thick cylin-
ders and/or high circumferential mode numbers.

The character of the nonlinearity (i.e., whether it is softening or
hardening) depends primarily on &, which is the aspect ratio of the vibration
mode. This result is illustrated in figure 4, which shows several free vibra-
tion response curves computed from equation (8) for values of ¢ ranging from
0.10 to 4.0. The solid lines show the results of the present analysis; they
were calculated for constant values of the nonlinearity parameter ¢ = 1.0 and
Poisson's ratio u = 0.3. The present calculations show that the vibrations
are generally of the softening type when the aspect ratio & 1is less than
unity. For larger values of the aspect ratio, the solid curves indicate a
nonlinearity of the hardening type.

For comparison purposes, the dashed curves in figure 4 illustrate Chu's
results (ref. 4), which correspond to € = 1.0 and p = 0.318. Chu points
out that his results possess a symmetric dependence on the aspect ratioc param-
eter, whereby his curves for & = 1/2, 1/4, 1/8 . . . coincide with those for
t =2, 4, 8. .., respectively. Such a symmetric dependence on the aspect
ratio seems to conflict with the basic geometric nonsymmetry of the problem -
i.e., the surface of the cylinder is curved in the circumferential direction
but not in the axial direction.

With regard to this point, it will be noted that the present results do
not exhibit a symmetric dependence on the aspect ratio and do not agree with
the calculations of ref. 4. The major reason that the previous studies
(refs. 3 and 4) do not agree with the present work appears to be that the former

do not satisfy the necessary geometric continuity constraint on the

11



circumferential displacement, v. (The available experiments tend to favor
the present analysis; they will be discussed shortly. )

The previous studies did not consider coupled mode responses involving
both a driven mode and its companion. The solid lines shown in figure 5
illustrate such a coupled mode response for a typical cylinder. The response
curves were calculated from equations (10a) and (10b) with e = 0.01,

Gpyn = 0.1, and 7 and & corresponding to & = 0.1. It is of interest to
note that the solid response curves are analogous to the results obtained for
nonlinear vibrations of rings and for nonlinear vibration absorbers (refs. 1
and 5.)

Along the a-b portion of the solid curves (fig. 5), B 1is zero and only
the driven mode responds. Along the segments b-c-d and e-f-g, both the driven
mode and its companion respond with comparable amplitudes; in this case, the
response curves are adjacent to the dashed lines, o-n. The response curves
exhibit vertical tangents at points ¢, f, g, and h, and the segments c-d and
f-g are suspected of being unstable. Along g-h-i-j, the response of the com-
panion mode is much greater than that of the driven mode. This situation is
analogous to the vibration absorber response in which the driven mass experi-
ences very little motion while the absorber mass vibrates with large displace-
ments. For ring vibrations, the segment corresponding to g-h-i-j was found to
be unstable, and a similar result appears true for cylinders. To the left of
point g, the vibrations apparently revert to the one mode case, with B =0
and A given by equation (8). For some cylinders, this may result in a "gap"
region, in which both solutions (7) and (9) are unstable. Such unstable gaps

in the response have been observed in related problems, and analog computer
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s?ﬁdies indicate that nonsteady vibrations with rapidly changing amplitudes
occur in these regions. (See refs. 1, 6, and 7 in this regard. )

Experimental results for the nonlinear flexural vibrations of thin-walled
circular cylinders are rather scarce. Among the best available data is that of
Olson (ref. 2) who obtained nonlinear forced response curves for the vibration
of a thin cylindrical shell. Olson's experimental data is shown by the circles
and dashed lines in figure 6. The solid line in figure 6 is the free vibration
response curve calculated from equation (8) for Gmpn = 0 and with values of
€, 7, and B that correspond to Olson's experiment. Both theory and experi-
ment indicate a nonlinearity of the softening type for this case, whereas the
previous theoretical results (refs. 3 and 4) indicate a hardening type of non-
linearity for all cylinders. The agreement shown in figure 6 is reasonably
good, despite the fact that the theory 1s for freely-supported ends whereas the
test cylinders had end clamping. It is of interest to note that Olson also
detected nonsteady vibrations in his experiments; these vibrations may have

been due to coupled mode responses.

Nonlinear Vibrations of Related Axisymmetric Systems

The results for thin cylindrical shells are qualitatively similar to those
for rings; in both cases, the companion mode can be parametrically excited and
participate in the motion. In some cases, the driven mode and its companion
combine to produce a circumferentially travelling wave; responses of this type
have been detected for rings (ref. 1), cylindrical shells (ref. 8), conical
shells (ref. 9), and circular plates (ref. 10). It seems reasonable to expect
that similar motions will occur for the nonlinear vibration of other flexible

axisymmetric bodies. This suggests the possibility of formulating a general
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theory for the nonlinear vibration of axisymmetric systems, and the present

work is being extended along these lines.

DYNAMIC SNAP-THROUGH BUCKLING OF ELASTIC SHALLOW CONICAL

AND SPHERTICAL CAPS

A second class of nonlinear problems which has been studied involves the
axisymmetric snap-through buckling of shallow conical and spherical caps sub-
Jected to uniformly distributed impulsive loads. For this problem, it is
assumed that the duration of the impulse is short with respect to the period
of the fundamental flexural mode, but long with respect to the first exten-
sional mode of the shell. The shell is assumed to behave as a single-degree-
of -freedom system during its first cycle of oscillation and inplane inertia is
neglected.

The method of attack is to investigate the behavior of the shell at the
time when its amplitude reaches a maximum. Treating the shell as an undamped
single-degree-of -freedom system, the internal strain energy at maximum dis-
placement is equal to the initial kinetic energy of the shell. The initial
kinetic energy can in turn be related to the applied impulse by considering
conservation of momentum.

Thus, the initial impulse can be obtalned as a function of the maximum
displacement. The maximum displacement w will increase with increase in
initial impulse I wuntil the impulse is sufficient to cause snap-through
buckling. At the snap-through impulse there will be a sudden increase in maxi-
mum displacement with respect to & change in initial impulse. The condition
for snap-through is therefore given by

S 1L or — =0
dt dw

1k




Conical Shell
The problem to be considered first is that of a shallow conical shell
which deforms axisymmetrically. The results will be summarized briefly and
further details may be obtained in reference 11. The cone has a height H, an
external radius b, and thickness h. The radius to a point on the middle sur-
face is r (see fig. 7a). The shell is considered shallow in the sense that

the rise angle of the cone and the sine of the rise angle can be replaced by

H/b.
The strain energy of the shell can be expressed as
b b
Ve Lt f (512 + 2 + aielez)rdr + %I f (K12 + Ko + 2p,K1K2)rdr
2(1 - p2)gR VYo A 0

(11)
where the factor QnﬁgEh has been used to render the strain energy nondimen-
sional. Here €3, ep and Kj, Ko are, respectively, the extensional strains
and curvatures in the radial and circumferential directions. Young's modulus
is denoted by E and Poisson's ratio by u; A is the shell parameter, which

is defined by

ﬁ=£qwu—u& (12)

The nonlinear strains and curvatures given in equation (11) are related to the

displacements by

\
¢ =@+§d_w+;y.) K, = &%
1% "var  2\ar 17 22
) (13)
- u Ko = 1l dw
2=z 2 &
J
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where u and w are the maximum deflections in the horizontal (r) and vertical

(z) directions, respectively.

Solutions for Various Boundary Conditions
Consider first the solution for the conical cap which has boundary condi-
tions at r = b such that the displacement is restrained in the radial direc-
tion (i.e., u = 0). The shell can be either clamped or simply-supported with
respect to the w displacement at the boundary.

The maximum deflection can be approximated by

2 2
W o= on<1 - b_2>(1 -C -E-e-> (1k)

where w, and C are constants. The boundary conditions at r = Db can be

satisfied by a proper choice of C, that is,

. d
Clamped: E":o, C=1
l+yp
Simply supported: Mj = -D(Ky + puKp) =0, C = 5
+

The shape given by equation (lh) corresponds to the deflection of a circular
plate subjected to a uniform lateral load and supported at the boundary.
Following the procedure Just outlined leads to an equation such as the

following one which holds for the clamped restrainsd boundary conditions

aw
dr

i.e., = 0}.

r=b r=b

T = At{o.0288w," 2:395
N\t

- 0.0908wy0 + wo2[0.0719 + (15)
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where

-
;. Tos0 - ue) (16)
En'2

I is the initial uniformly distributed impulse per unit area, p 1is the mass
density of the shell, and value of u = 0.3 has been used.
The condition for snap-through is dI/dwo = 0 which gives the critical

deflection for the clamped case as

vo = 1.1823 - \Io.lugé ; 92—)'\2??_6_ (17)

Note that at certain values of A the amplitude W, becomes imaginary;
at these points there is no real w, corresponding to the snap-through condi-
tion. The physical interpretation of imaginary values of Wy 1is that the
shell does not exhibit a snapping phenomenon and instead the motion is smooth
and oscillatory. The minimum values for A for the clamped case corresponding
to real wy is Mpin = 5.0. Thus, for example, in the case of a cone with a
clamped restrained boundary, snap-through buckling does not occur unless A
exceeds 5.0 which happens when the rise of the cone H exceeds 3.76h.

A plot of the impulse required for snap-through as a function of the shell
parameter A 1is presented in figure 8. These curves are obtained from equa-
tion (15) taking account of equation (17). Similar calculations were carried
out for all combinations of simply-supported or clamped and restrained (i.e.,
radial displacement wu = O) or unrestrained (i.e., radial stress o7 = O) bound-
ary conditions. These are also given in figure 8.

A study of the magnitude of critical deflection occurring at snap-through

indicates that it is of the order of the rise of the cone. For example, when

A = 6.0, %? = 0.902 for the clamped restrained case.
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Spherical Cap Results
Results were also obtained for the snap~through buckling of a spherical
cap having the same boundary conditions and loading as the cone. The appropri-

ate strain-displacement relations were taken as

2\
= ifdu _ + L [dw

1l/u

o3
> (18)

K, - L &%

R2 da?
K, = L 1w

R2Q, da J

Here a 1is the opening angle variable and R is the radius of the sphere
(fig. 7b). The quantities u and w are the tangential and normal displace-
ments of the shell.

The displacement w 1s taken in the same form as equation (14) and the
procedure for the spherical cap is directly analogous to that for the conical
cap. A plot of the impulse required for snap-through as a function of shell
parameter A 1is given in figure 9 for boundary conditions comparable to those
of the cone, i.e., simply-supported and clamped, restrained and unrestrained.
The results for the clamped restrained spherical cap agree identically with

those given in reference 12.

Discussion of Results
It is interesting to note in figure 8 that for relatively large values of

A the strength of the simply-supported restrained conical shell is greater

18




than the comparable fixed case. On the other hand for small values of A where
the rise of the cone is quite small, the reverse is true.

The first effect has been noted previously by Humphreys and Bodner
(ref. 12) for dynamic buckling of a long cylindrical panel. They found that
for all ranges of the curvature parameter the simply-supported panel exhibited
a greater resistance to snap-through than did clamped panels.

The results for the spherical cap in figure 9 follow the same trend with
the simply-supported shell always being stronger with respect to dynamic
buckling than the clamped shell. These results emphasize the importance of
boundary conditions in assessing the dynamic strength of this class of shells.

It is also of interest to compare the behavior of a shallow conical shell
with that of a shallow spherical shell of comparable geometry and boundary con-
ditions. Since a shallow sphere cannot be compared directly with a shallow
cone, two comparisons were made, first with equal rises and the second with
equal edge slopes. Both results are plotted in figure 10 for the restrained
boundary conditions where the spherical cap parameters have been used as a
basis for the plots. In general, figure 10 shows that for a conical or spheri-
cal shell of the same rise H, the stronger structure to resist dynamic buckling
is the sphere. Figure 10 also indicates that if the cone and sphere have the
same slope at the boundary, the sphere is not as strong as the cone. The same
qualitative results were also found to hold for the unrestrained cases. This
suggests that a shallow conical cap with a dynamic buckling impulse equivalent
to that of a spherical cap has a height larger than the sphere.

A final comment should be made with respect to the accuracy of the present
analysis. The two major sources of error in the analysis lie in the assumption

that the shell behaves as a single-degree-of-freedom system and the requirement
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that the shell deform axisymmetrically. Both of these effects become more
important with increasing shell rise. References 13 and 14 present results
for the axisymmetric dynamic snap-through buckling of a clamped spherical cap
using five degrees of freedom. The results are shown in figure 9 as the dotted
line. In general good correlation is obtained for the single degree of freedom
up to A of about 7. Some disagreement between the present results and those
of reference 14 occurs for the cutoff point; however, this may be attributed
to the difficulty in defining a finite cutoff point in the method used by
reference 1k.

Results for the axisymmetric static buckling of a clamped spherical cap
are known to be adequate up to A of about 5.5 with nonsymmetric effects pre-
dominating for larger values of A. Since the dynamic snap-through requires a
certain amount of time to occur, it seems reasonable to expect that axisym-
metric behavior will hold in the dynamic case up to a higher A than for static
snap-through. In view of these effects the results given herein are felt to be
inadequate for A beyond about nine for conical shells and for A beyond seven

for spherical shells.

CONCLUDING REMARKS

A solution has been given for the nonlinear flexural vibrations of a thin-
walled circular cylinder subjected to harmonic excitation of a single mode. It
was found that for certain frequencies of the driving force, only the driven
mode responded. For other frequencies, however, the companion mode also became
excited due to nonlinear parametric coupling between the modes. Results given
indicate that the nonlinearity for a cylindrical shell can be either of the

softening or hardening type depending on the aspect ratio of the vibration mode.
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This conclusion differs from the results of Chu which indicated that the non-
linearity was always of the hardening type. The available experimental data
agrees reasonably well with the analysis presented here. A discussion is also
given which relates the present study to the nonlinear vibrations of other
axisymmetric systems.

Results are also given for the snap-through buckling of shallow conical
and spherical caps subjected to a uniformly distributed idealized impulse.
Solutions are given for a variety of boundary conditions for both types of
shells and several comparisons are made between the results. One comparison
shows that for conical caps a simply-supported shell can resist a larger impﬁlse
than a clamped cone. Another comparison between spherical and conical caps
having the same height indicates that the sphere can resist a larger impulsé

than the cone before buckling.
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